FULL PRESCRIBING INFORMATION: CONTENTS*
ASCOR® is indicated for the short term (up to 1 week) treatment of scurvy in adult and pediatric patients age 5 months and older for whom oral administration is not possible, insufficient or contraindicated.

DOSE AND ADMINISTRATION
- **Initial U.S. Approval:** 1947
- **Recommended Doses:** See Table 1.
- **Infusion Rate:** Must be diluted prior to use (2.1).
- **Storage:** Store at room temperature.
- **Use in Specific Populations:** See Table 1.

PATIENT COUNSELING INFORMATION
- **Adverse Reactions:** Close supervision is necessary because the solution is isotonic.
- **Contraindications:** Pregnancy or lactation (2.2).
- **Precautions:** All patients on anticoagulant therapy must be closely monitored.

FULL PRESCRIBING INFORMATION
See Full Prescribing Information for important additional information (2.1).

FULL PRESCRIBING INFORMATION
To use ASCOR®, these highlights do not include all the information needed to use ASCOR. See Full Prescribing Information for ASCOR.

HIGHLIGHTS OF PRESCRIBING INFORMATION
- **Antacids:** May decrease the absorption of ascorbic acid.
- **Acetaminophen:** Undergoes glucuronidation; may increase plasma levels of acetaminophen.
- **Anticholinergics:** May decrease the absorption of ascorbic acid.
- **Acidification:** Ascorbic acid may cause acidification of the urine.
- **Amphetamines:** May alter the response to noradrenaline (adrenergic agonist) (2.2).

PATIENT COUNSELING INFORMATION
- **Adverse Reactions:** Close supervision is necessary because the solution is isotonic.
- **Contraindications:** Pregnancy or lactation (2.2).
- **Precautions:** All patients on anticoagulant therapy must be closely monitored.

FULL PRESCRIBING INFORMATION
See Full Prescribing Information for important additional information (2.1).

FULL PRESCRIBING INFORMATION
To use ASCOR®, these highlights do not include all the information needed to use ASCOR. See Full Prescribing Information for ASCOR.

HIGHLIGHTS OF PRESCRIBING INFORMATION
- **Antacids:** May decrease the absorption of ascorbic acid.
- **Acetaminophen:** Undergoes glucuronidation; may increase plasma levels of acetaminophen.
- **Anticholinergics:** May decrease the absorption of ascorbic acid.
- **Acidification:** Ascorbic acid may cause acidification of the urine.
- **Amphetamines:** May alter the response to noradrenaline (adrenergic agonist) (2.2).

PATIENT COUNSELING INFORMATION
- **Adverse Reactions:** Close supervision is necessary because the solution is isotonic.
- **Contraindications:** Pregnancy or lactation (2.2).
- **Precautions:** All patients on anticoagulant therapy must be closely monitored.

FULL PRESCRIBING INFORMATION
See Full Prescribing Information for important additional information (2.1).

FULL PRESCRIBING INFORMATION
To use ASCOR®, these highlights do not include all the information needed to use ASCOR. See Full Prescribing Information for ASCOR.

HIGHLIGHTS OF PRESCRIBING INFORMATION
- **Antacids:** May decrease the absorption of ascorbic acid.
- **Acetaminophen:** Undergoes glucuronidation; may increase plasma levels of acetaminophen.
- **Anticholinergics:** May decrease the absorption of ascorbic acid.
- **Acidification:** Ascorbic acid may cause acidification of the urine.
- **Amphetamines:** May alter the response to noradrenaline (adrenergic agonist) (2.2).

PATIENT COUNSELING INFORMATION
- **Adverse Reactions:** Close supervision is necessary because the solution is isotonic.
- **Contraindications:** Pregnancy or lactation (2.2).
- **Precautions:** All patients on anticoagulant therapy must be closely monitored.
8 USE IN SPECIFIC POPULATIONS
8.1 Pregnancy

ASCOR should be used with caution in pregnant patients (of uncertain size, it is not always possible to estimate their renal function). In general, the use of ascorbic acid is not recommended during pregnancy.

Animal reproduction studies have not been conducted with ASCOR. There are no available data on use of ASCOR in pregnant women. ASCOR should be used during pregnancy only if clearly needed.

There is a renal threshold for ascorbic acid (vitamin C); above this, excessive amounts may be excreted in the urine. When body stores are saturated, administration of ascorbic acid in patients with severe deficiency (e.g., following high dose ascorbic acid administration) may cause increased urine excretion of vitamin C and oxalate. This increase in oxalate excretion may result in the formation of calcium oxalate crystals, calculi, or nephro lithiasis, and could result in increased risk of renal impairment.

The absorption of ascorbic acid is impaired in patients with renal disease, and the renal clearance of ascorbic acid is increased. In patients with renal impairment, there may be an increased risk of ascorbic acid toxicity. Therefore, ascorbic acid should be used with caution in patients with renal impairment.

5.3 Laboratory Test Interference

Ascorbic acid may interfere with numerous laboratory tests based on oxidation-reduction reactions, including blood and urine glucose testing, nitrite and bilirubin levels, and drug metabolism. Ascorbic acid may also interfere with the accuracy of certain electronic monitoring devices, such as transcutaneous oxygen and carbon dioxide monitors.

8.2 Neonatology

Because ascorbic acid is a strong reducing agent, it can interfere with numerous laboratory tests based on oxidation-reduction reactions, including blood and urine glucose testing, nitrite and bilirubin levels, and drug metabolism. Ascorbic acid may also interfere with the accuracy of certain electronic monitoring devices, such as transcutaneous oxygen and carbon dioxide monitors.

5.3 Laboratory Test Interference

Ascorbic acid may interfere with numerous laboratory tests based on oxidation-reduction reactions, including blood and urine glucose testing, nitrite and bilirubin levels, and drug metabolism. Ascorbic acid may also interfere with the accuracy of certain electronic monitoring devices, such as transcutaneous oxygen and carbon dioxide monitors.

8.3 Nursing Mothers

There is a renal threshold for ascorbic acid (vitamin C); above this, excessive amounts may be excreted in the urine. When body stores are saturated, administration of ascorbic acid in patients with severe deficiency (e.g., following high dose ascorbic acid administration) may cause increased urine excretion of vitamin C and oxalate. This increase in oxalate excretion may result in the formation of calcium oxalate crystals, calculi, or nephrolithiasis, and could result in increased risk of renal impairment.

5.3 Laboratory Test Interference

Ascorbic acid may interfere with numerous laboratory tests based on oxidation-reduction reactions, including blood and urine glucose testing, nitrite and bilirubin levels, and drug metabolism. Ascorbic acid may also interfere with the accuracy of certain electronic monitoring devices, such as transcutaneous oxygen and carbon dioxide monitors.

8.4 Pediatric Use

ASCOR is indicated for the short term (up to 1 week) treatment of scurvy in pediatric patients age 5 months and older. ASCOR is also indicated for the short term (up to 1 week) treatment of scurvy in pediatric patients age 1 year to less than 11 years for Preterm premature rupture of membranes, preterm delivery, and Preterm delivery; the benefit of treatment may be offset by the risk of increased urinary oxalate levels.

5.3 Laboratory Test Interference

Ascorbic acid may interfere with numerous laboratory tests based on oxidation-reduction reactions, including blood and urine glucose testing, nitrite and bilirubin levels, and drug metabolism. Ascorbic acid may also interfere with the accuracy of certain electronic monitoring devices, such as transcutaneous oxygen and carbon dioxide monitors.

9 DRUG INTERACTIONS

9.1 General

Ascorbic acid is a strong reducing agent and can interfere with numerous laboratory tests based on oxidation-reduction reactions, including blood and urine glucose testing, nitrite and bilirubin levels, and drug metabolism. Ascorbic acid may also interfere with the accuracy of certain electronic monitoring devices, such as transcutaneous oxygen and carbon dioxide monitors.

5.3 Laboratory Test Interference

Ascorbic acid may interfere with numerous laboratory tests based on oxidation-reduction reactions, including blood and urine glucose testing, nitrite and bilirubin levels, and drug metabolism. Ascorbic acid may also interfere with the accuracy of certain electronic monitoring devices, such as transcutaneous oxygen and carbon dioxide monitors.

9.2 Coadministered Agents

Because ascorbic acid is a strong reducing agent, it can interfere with numerous laboratory tests based on oxidation-reduction reactions, including blood and urine glucose testing, nitrite and bilirubin levels, and drug metabolism. Ascorbic acid may also interfere with the accuracy of certain electronic monitoring devices, such as transcutaneous oxygen and carbon dioxide monitors.

5.3 Laboratory Test Interference

Ascorbic acid may interfere with numerous laboratory tests based on oxidation-reduction reactions, including blood and urine glucose testing, nitrite and bilirubin levels, and drug metabolism. Ascorbic acid may also interfere with the accuracy of certain electronic monitoring devices, such as transcutaneous oxygen and carbon dioxide monitors.